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INTRODUCTION

The Army's projectiles are routinely gun-fired during the development phase. The object-
ives of Excalibur's gun firing were: 1) validate the strength and operability of components, sub-
systems, and systems; 2) characterize the gun-launch loads for failure reviews; 3) identify weak
subsystems for redesign; and 4) determine the range and accuracy for different propellant
charges.

To characterize gun-launch loads other munitions were instrumented. Lee (ref. 1) was one
of the first researchers to document the internal ballistics by instrumentation. In 1993, Lee
published a paper describing seven live firings of a 155 mm with pressure transducers. Lodge
and Dilkes (ref. 2) used accelerometers and displacement transducers to measure in-bore
dynamics. Using a smooth-barrel, 120-mm gun, three projectiles were fired. Wilkerson and
Palathingal (ref. 3) reported on an instrumented 120-mm M832E1 heat round. David, Brown,
Myers, and Hollis (ref. 4) described some of the commercially available equipment for mea-
suring accelerations in different directions. Katulka, Pergino, Muller, McMullen, Wert, and
Ridgley (ref. 5) recorded both axial acceleration and pressures on a 120-mm projectile. They
used telemetry to transmit data. Presented in the referenced paper was one resulting pressure
and acceleration curve. While the acceleration curve had a different signature than Excalibur,
some of the local time variations were similar to the Excalibur curves. Szymanski (ref. 6)
designed and assembled an instrumentation package for a 4-in. air gun with strain gages and
accelerometers.

This paper reports the extensive effort to characterize the gun-tube pressures and the
accelerations for Excalibur. Excalibur's live-fire test program uniquely incorporates both
pressure sensors and three-axis accelerometers, spans a range of charges, and includes
multiple firings at various charges.

METHOD: LIVE FIRE TESTS

Figure 1 shows a sketch of the gun tube and projectile. The pressure sensor locations are
shown as P1 through P7. Sensor P1 measures the breech pressure. Sensor P2 is close to the
base at shot start and provides a reasonable estimate of base pressure, particularly for the first
centimeters of motion. The accelerometers are located in the projectile in the on-board-recorder
(OBR).
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Figure 1
Gun tube, projectile, and pressure sensor locations

For live-fire shots, the projectile shown in figure 1 is a soft-recovery vehicle. The soft-
recovery vehicle was modeled after the tactical Excalibur, but instead of a regular payload, the
payload section contains a parachute. The vehicle is about 1-m long and has a mass of about
50 kg. The vehicle was designed to deploy the parachute and land softly without additional
damage to sensitive electronic components. For most firings, the soft-recovery vehicle has a
base, control section, and forward nose similar to the Excalibur. An OBR is located about 0.5 m
from the base of the projectile. In the OBR section, three perpendicular accelerometers
measure accelerations in the axial and two transverse (balloting) directions. The sample rate is
recorded at approximately 500,000 samples per second with an anti-alias filter of 50 kHz.
Accelerations are measured through the in-bore gun firing and muzzle exit events. Following
landing, the soft recovery vehicle is taken apart and the structural integrity of parts is evaluated.
If failures have occurred, the recorded pressures and accelerations are compared to other data
sets as part of the root cause investigation.

RESULTS

Single Shot Acceleration Example

Figure 2 shows recorded accelerations for one of the margin shots. A margin shot uses a
charge (e.g., an Army's PIMP+5% charge), which is greater than an operational shot. Trans-
verse accelerations were recorded in perpendicular directions that rotated with the projectile.
One of the transverse accelerations is shown. The axial acceleration is relatively smooth near
the maximum acceleration or 'set-back' region, occurring at about 0.035 sec for the OBR3 case.
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Muzzle exit occurs at about 0.011 sec. At muzzle exit, high frequency ± accelerations occur in
the transverse and axial directions. The 'set-forward' acceleration corresponds to the minimum
(-) axial acceleration and occurs at muzzle exit. The balloting acceleration is the maximum (+)
transverse acceleration and occurs at muzzle exit. For the case OBR3 in figure 2, the set-back
acceleration was +13299 G's, the set-forward acceleration was -3884 G's, and the maximum
balloting acceleration was +2298 G's.

Example, an Army Pimp+5% Charge, OBR 3
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Figure 2
Example acceleration for an Army PIMP+5% charge, recorded

Projectile design requires consideration of both static and dynamic loads. Actual dynamic
loads, such as the recorded accelerations shown in figure 2, are used for dynamic analysis. For
dynamic analysis, frequency content and the change in magnitude of accelerations at muzzle
exit are important considerations. A discussion of frequency content for gun firings is provided
by Cordes and others (ref. 7). Just prior to muzzle exit, the base of the projectile passes the
bore evacuator of the gun. The bore evacuator may also contribute to the magnitude and
frequency content in the muzzle exit accelerations (ref. 8). In figure 2, the base of the projector
passes the bore evacuator at about 0.009 sec.

Range of Charges

The Excalibur program includes test firings for a range of propellant charges. Table 1
shows the breech pressures for the live-firings. The coefficient of variation for breech pressure
was 0.05 or less, indicating relatively small variations in measured breech pressure from shot to
shot.
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Table 1

Summary of Excalibur live fire breech pressures

Live firings: Excalibur pressures for live firings

Number of Average breech Standard
Charge zones firings pressure (MPa) deviation Coefficient of variation

PIMP +5% 10 385 17.5 0.05

Swedish 9++ 3 385 8.6 0.02

PIMP 1 363

MACS5 6 351 16.8 0.05

S8S 7 323 4.9 0.02

MACS4 4 117 2.6 0.02

7W 2 158 4.1 0.03

MACS2 1 137

Charge 9 77B 5 275 3.0 0.01

MACS3 6 116 2.4 0.02

Preliminary design generally considers two static load cases. Both cases include an axial
and a transverse acceleration. The transverse acceleration can be from any direction. The
design cases are:

"* Set-back with the maximum axial acceleration (+) and a relatively small
transverse load (±)

"* Muzzle exit with the minimum axial acceleration (-) and the maximum
transverse acceleration (±). Muzzle exit is composed of ± accelerations, which
may induce rattling and impacts within the sub-systems. These local impacts
may cause high frequency shocks, which will adversely affect the sensitive
electronic components.

Tables 2 through 6 show the average accelerations, the standard deviations, and the
coefficients of variation for the set-back and muzzle exit accelerations. From tables 2 through 6
and the Excalibur tests, the following observations can be made:

"* The maximum axial accelerations (+), like the measured breech pressures,
have relatively small variations for the same charges

"* The transverse acceleration at set-back is smaller than the transverse
acceleration at muzzle exit. This was true for all shots. The transverse
acceleration at set-back ranged between about 10% and about 50% of the
muzzle exit acceleration.
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At muzzle exit, the measured set-forward (-) acceleration has a larger varia-

tion than the transverse acceleration

Table 2
Statistics on 10 PIMP+5% shots

A accelration atistics on accelerash tion (C
d vs 14650 .,012

vaito .81.21 -0.47 0.32
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Table 5
Statistics on seven 8S shots

Table 6
Statistics on four MACS3 shots

Several correlations were completed for the live firings. Figure 3 shows the measured
breech pressure and the maximum recorded accelerations, set back, in the axial direction.
Figure 4 shows the relationship between measured pressure near the base and the maximum
axial acceleration. The calculated maximum acceleration using f = ma for a 48.9 kg 155-mm

diameter projectile is also shown in figures 3 and 4. The straight line shows a linear trend line
for the experimental data and the measure of correlation to the trend-line (R2). The closer R2 is
to 1.0, the better the correlation between the two variables. The correlation of base pressure to
maximum acceleration is better than the correlation with breech pressure.6
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Correlation between breech pressures and maximum acceleration

Experimental Sunusury. Base Pressure vs Maximum Recorded Gs
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Figure 4
Correlation between base pressures and maximum acceleration

The set-forward and balloting accelerations were plotted against the maximum axial
acceleration determine the relationship between set back and muzzle exit. Figure 5 shows the
set-forward acceleration and figure 6 shows the maximum balloting acceleration as a function of
the maximum acceleration. In both figures, the R2 correlation is 50% or lower indicating a rela-
tively large amount of data scatter and a relatively poor correlation to axial acceleration. The
scatter in the balloting accelerations is less than scatter in the set-forward accelerations.
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Maximum Axial Gsvs Minimum Axial Gs

(Set Back versus Set Forward Accelerations)
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Figure 5
Correlation maximum and minimum axial accelerations

Maximum Axial Gs vs Maximum Transverse Gs

(Set Back versus Balloting Acceleration)
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Correlation between maximum axial and maximum transverse accelerations
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DISCUSSION: MUZZLE EXIT VARIATIONS

Efforts are underway to understand the relatively large variations in the muzzle exit
accelerations. In the simplistic sense, set-forward accelerations are dependent on the base
pressure at muzzle exit. This base pressure causes a compression in the projectile. At muzzle
exit, this base pressure decompresses within a very short time (-.1 to .5 ms). The dynamic de-
compression allows the projectile to spring back, thus creating a set-forward acceleration. This
might lead one to believe that the set-forward can be related to base pressure at muzzle exit.
The data does not support this simplistic approach. Future work will probably include
correlating the P7 pressure (fig. 1) to the muzzle exit accelerations.

Muzzle exit is a very complicated event. As the nose of the projectile exits the barrel, the
detached shock wave that was in the barrel, reattaches to the projectile nose causing vibrations
to occur. In the barrel, the obturator and bourrletts support the projectile in the transverse
direction and help to limit the transverse accelerations. When the forward bourdett leaves the
barrel, the projectile looses lateral support. This loss of lateral support allows for more trans-
verse motion. Also, un-symmetric blow-by pressures caused by imperfect obturator sealing,
have a magnified effect on the round due to the loss of the forward bourlett support. As the
round exits the barrel, the support moment arm decreases (end of tube to aft bourrlett) and any
moment unbalance that causes a round to barrel end impact creates a large reaction force. This
large reaction force increases the transverse accelerations. The transverse accelerations
couple into the axial accelerations. Thus, the large transverse accelerations at muzzle exit also
result in large axial accelerations (±).

At muzzle exit, the transverse accelerations and axial accelerations may depend on addi-
tional factors. These factors include barrel wear, barrel straightness, blow-by pressures, bourlett
clearance, charge, elevation, round and barrel differential temperatures, round alignment, and
clocking (due to round center of gravity offsets) to name few. The scatter in the muzzle exit
data is tied to the variations that affect muzzle exit behavior. This is in direct contrast to the
F=ma equation which controls the quasi-static, set-back acceleration in which a very limited
number of factors are present (mainly charge level). Future work should help identify which
variables contribute most to the muzzle exit variations.

CONCLUSIONS

Based on the test results and the statistics, the following conclusions were reached;

* Variations in breech pressures between like charges are relatively small,
having a coefficient of variation of 0.05 or less.

"* Variations in the base pressures between like charges are slightly higher than
the variations in the breech pressure.

"* Variations in the maximum axial set-back accelerations between like charges
are also relatively small, having a coefficient of variation of 0.08 or less.

* There is relatively good correlation between the pressure measured near the
base of the projectile and the maximum acceleration at set-back.
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The set-forward (-) and balloting accelerations have relatively high coefficients
of variation and exhibit poor correlation to maximum axial acceleration or
maximum pressure.

RECOMMENDATIONS

Set-forward (-) and balloting (±) accelerations exhibit relatively high variations. These
variations should be considered in the design process. Set-forward and balloting loads
(accelerations) should probably be determined by testing rather than scaling. Alternately, the
averages, standard deviations, and the 99% confidence level values would include the varia-
tions in the set-forward and balloting loads and could be used for design.

The set-back accelerations and the pressures have relatively small variations from shot to
shot. In most cases, these design values can be scaled or determined analytically.
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